您好, 欢迎来到 !    登录 | 注册 | | 设为首页 | 收藏本站

1.6 快速排序

wiki 2022/2/5 14:02:05 算法 字数 69842 阅读 2873

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n2),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n2),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

1. 算法步骤

  1. 从数列中挑出一个元素,称为 "基准"(pivot);

  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

2. 动图演示


代码实现

JavaScript

实例

function quickSort(arr, left, right) {
    var len = arr.length,
        partitionIndex,
        left = typeof left != 'number' ? 0 : left,
        right = typeof right != 'number' ? len - 1 : right;

    if (left < right) {
        partitionIndex = partition(arr, left, right);
        quickSort(arr, left, partitionIndex-1);
        quickSort(arr, partitionIndex+1, right);
    }
    return arr;
}

function partition(arr, left ,right) {     // 分区操作
    var pivot = left,                      // 设定基准值(pivot)
        index = pivot + 1;
    for (var i = index; i <= right; i++) {
        if (arr[i] < arr[pivot]) {
            swap(arr, i, index);
            index++;
        }        
    }
    swap(arr, pivot, index - 1);
    return index-1;
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
function partition2(arr, low, high) {
  let pivot = arr[low];
  while (low < high) {
    while (low < high && arr[high] > pivot) {
      --high;
    }
    arr[low] = arr[high];
    while (low < high && arr[low] <= pivot) {
      ++low;
    }
    arr[high] = arr[low];
  }
  arr[low] = pivot;
  return low;
}

function quickSort2(arr, low, high) {
  if (low < high) {
    let pivot = partition2(arr, low, high);
    quickSort2(arr, low, pivot - 1);
    quickSort2(arr, pivot + 1, high);
  }
  return arr;
}

Python

实例

def quickSort(arr, left=None, right=None):
    left = 0 if not isinstance(left,(int, float)) else left
    right = len(arr)-1 if not isinstance(right,(int, float)) else right
    if left < right:
        partitionIndex = partition(arr, left, right)
        quickSort(arr, left, partitionIndex-1)
        quickSort(arr, partitionIndex+1, right)
    return arr

def partition(arr, left, right):
    pivot = left
    index = pivot+1
    i = index
    while  i <= right:
        if arr[i] < arr[pivot]:
            swap(arr, i, index)
            index+=1
        i+=1
    swap(arr,pivot,index-1)
    return index-1

def swap(arr, i, j):
    arr[i], arr[j] = arr[j], arr[i]

Go

实例

func quickSort(arr []int) []int {
        return _quickSort(arr, 0, len(arr)-1)
}

func _quickSort(arr []int, left, right int) []int {
        if left < right {
                partitionIndex := partition(arr, left, right)
                _quickSort(arr, left, partitionIndex-1)
                _quickSort(arr, partitionIndex+1, right)
        }
        return arr
}

func partition(arr []int, left, right int) int {
        pivot := left
        index := pivot + 1

        for i := index; i <= right; i++ {
                if arr[i] < arr[pivot] {
                        swap(arr, i, index)
                        index += 1
                }
        }
        swap(arr, pivot, index-1)
        return index - 1
}

func swap(arr []int, i, j int) {
        arr[i], arr[j] = arr[j], arr[i]
}

C++

实例

//严蔚敏《数据结构》标准分割函数
 Paritition1(int A[], int low, int high) {
   int pivot = A[low];
   while (low < high) {
     while (low < high && A[high] >= pivot) {
       --high;
     }
     A[low] = A[high];
     while (low < high && A[low] <= pivot) {
       ++low;
     }
     A[high] = A[low];
   }
   A[low] = pivot;
   return low;
 }

 void QuickSort(int A[], int low, int high) //快排母函数
 {
   if (low < high) {
     int pivot = Paritition1(A, low, high);
     QuickSort(A, low, pivot - 1);
     QuickSort(A, pivot + 1, high);
   }
 }

Java

实例

public class QuickSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        return quickSort(arr, 0, arr.length - 1);
    }

    private int[] quickSort(int[] arr, int left, int right) {
        if (left < right) {
            int partitionIndex = partition(arr, left, right);
            quickSort(arr, left, partitionIndex - 1);
            quickSort(arr, partitionIndex + 1, right);
        }
        return arr;
    }

    private int partition(int[] arr, int left, int right) {
        // 设定基准值(pivot)
        int pivot = left;
        int index = pivot + 1;
        for (int i = index; i <= right; i++) {
            if (arr[i] < arr[pivot]) {
                swap(arr, i, index);
                index++;
            }
        }
        swap(arr, pivot, index - 1);
        return index - 1;
    }

    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

}

PHP

实例

function quickSort($arr)
{
    if (count($arr) <= 1)
        return $arr;
    $middle = $arr[0];
    $leftArray = array();
    $rightArray = array();

    for ($i = 1; $i < count($arr); $i++) {
        if ($arr[$i] > $middle)
            $rightArray[] = $arr[$i];
        else
            $leftArray[] = $arr[$i];
    }
    $leftArray = quickSort($leftArray);
    $leftArray[] = $middle;

    $rightArray = quickSort($rightArray);
    return array_merge($leftArray, $rightArray);
}

C

实例

typedef struct _Range {
    int start, end;
} Range;

Range new_Range(int s, int e) {
    Range r;
    r.start = s;
    r.end = e;
    return r;
}

void swap(int *x, int *y) {
    int t = *x;
    *x = *y;
    *y = t;
}

void quick_sort(int arr[], const int len) {
    if (len <= 0)
        return; // 避免len等於負值時引發段錯誤(Segment Fault)
    // r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素
    Range r[len];
    int p = 0;
    r[p++] = new_Range(0, len - 1);
    while (p) {
        Range range = r[--p];
        if (range.start >= range.end)
            continue;
        int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點
        int left = range.start, right = range.end;
        do {
            while (arr[left] < mid) ++left;   // 檢測基準點左側是否符合要求
            while (arr[right] > mid) --right; //檢測基準點右側是否符合要求
            if (left <= right) {
                swap(&arr[left], &arr[right]);
                left++;
                right--;               // 移動指針以繼續
            }
        } while (left <= right);
        if (range.start < right) r[p++] = new_Range(range.start, right);
        if (range.end > left) r[p++] = new_Range(left, range.end);
    }
}

递归法

实例

void swap(int *x, int *y) {
    int t = *x;
    *x = *y;
    *y = t;
}

void quick_sort_recursive(int arr[], int start, int end) {
    if (start >= end)
        return;
    int mid = arr[end];
    int left = start, right = end - 1;
    while (left < right) {
        while (arr[left] < mid && left < right)
            left++;
        while (arr[right] >= mid && left < right)
            right--;
        swap(&arr[left], &arr[right]);
    }
    if (arr[left] >= arr[end])
        swap(&arr[left], &arr[end]);
    else
        left++;
    if (left)
        quick_sort_recursive(arr, start, left - 1);
    quick_sort_recursive(arr, left + 1, end);
}

void quick_sort(int arr[], int len) {
    quick_sort_recursive(arr, 0, len - 1);
}

C++

函数法

sort(a,a + n);// 排序a[0]-a[n-1]的所有数.

迭代法

实例

// 参考:http://www.dutor.net/index.php/2011/04/recursive-iterative-quick-sort/
struct Range {
    int start, end;
    Range(int s = 0, int e = 0) {
        start = s, end = e;
    }
};
template <typename T> // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)、"大於"(>)、"不小於"(>=)的運算子功能
void quick_sort(T arr[], const int len) {
    if (len <= 0)
        return; // 避免len等於負值時宣告堆疊陣列當機
    // r[]模擬堆疊,p為數量,r[p++]為push,r[--p]為pop且取得元素
    Range r[len];
    int p = 0;
    r[p++] = Range(0, len - 1);
    while (p) {
        Range range = r[--p];
        if (range.start >= range.end)
            continue;
        T mid = arr[range.end];
        int left = range.start, right = range.end - 1;
        while (left < right) {
            while (arr[left] < mid && left < right) left++;
            while (arr[right] >= mid && left < right) right--;
            std::swap(arr[left], arr[right]);
        }
        if (arr[left] >= arr[range.end])
            std::swap(arr[left], arr[range.end]);
        else
            left++;
        r[p++] = Range(range.start, left - 1);
        r[p++] = Range(left + 1, range.end);
    }
}

递归法

实例

template <typename T>
void quick_sort_recursive(T arr[], int start, int end) {
    if (start >= end)
        return;
    T mid = arr[end];
    int left = start, right = end - 1;
    while (left < right) { //在整个范围内搜寻比枢纽元值小或大的元素,然后将左侧元素与右侧元素交换
        while (arr[left] < mid && left < right) //试图在左侧找到一个比枢纽元更大的元素
            left++;
        while (arr[right] >= mid && left < right) //试图在右侧找到一个比枢纽元更小的元素
            right--;
        std::swap(arr[left], arr[right]); //交换元素
    }
    if (arr[left] >= arr[end])
        std::swap(arr[left], arr[end]);
    else
        left++;
    quick_sort_recursive(arr, start, left - 1);
    quick_sort_recursive(arr, left + 1, end);
}
template <typename T> //整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)、"大於"(>)、"不小於"(>=)的運算子功能
void quick_sort(T arr[], int len) {
    quick_sort_recursive(arr, 0, len - 1);
}


如果您也喜欢它,动动您的小指点个赞吧

除非注明,文章均由 laddyq.com 整理发布,欢迎转载。

转载请注明:
链接:http://laddyq.com
来源:laddyq.com
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。


联系我
置顶