您好, 欢迎来到 !    登录 | 注册 | | 设为首页 | 收藏本站

检测图像上的硬币(和椭圆形)

检测图像上的硬币(和椭圆形)

这是一些实现传统方法(基于OpenCV doco)的C99源代码

#include "cv.h"
#include "highgui.h"

#include <stdio.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

//
// We need this to be high enough to get rid of things that are too small too
// have a definite shape.  Otherwise, they will end up as ellipse false positives.
//
#define MIN_AREA 100.00    
//
// One way to tell if an object is an ellipse is to look at the relationship
// of its area to its dimensions.  If its actual occupied area can be estimated
// using the well-kNown area formula Area = PI*A*B, then it has a good chance of
// being an ellipse.
//
// This value is the maximum permissible error between actual and estimated area.
//
#define MAX_TOL  100.00

int main( int argc, char** argv )
{
    IplImage* src;
    // the first command line parameter must be file name of binary (black-n-white) image
    if( argc == 2 && (src=cvLoadImage(argv[1], 0))!= 0)
    {
        IplImage* dst  = cvCreateImage( cvGetSize(src), 8, 3 );
        CvMemStorage* storage = cvCreateMemStorage(0);
        CvSeq* contour = 0;    
        cvThreshold( src, src, 1, 255, CV_THRESH_BINARY );
        //
        // Invert the image such that white is foreground, black is background.
        // Dilate to get rid of noise.
        //
        cvXorS(src, cvScalar(255, 0, 0, 0), src, NULL);
        cvDilate(src, src, NULL, 2);    
        cvFindContours( src, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0));
        cvZero( dst );

        for( ; contour != 0; contour = contour->h_next )
        {
            double actual_area = fabs(cvContourArea(contour, CV_WHOLE_SEQ, 0));
            if (actual_area < MIN_AREA)
                continue;

            //
            // FIXME:
            // Assuming the axes of the ellipse are vertical/perpendicular.
            //
            CvRect rect = ((CvContour *)contour)->rect;
            int A = rect.width / 2; 
            int B = rect.height / 2;
            double estimated_area = M_PI * A * B;
            double error = fabs(actual_area - estimated_area);    
            if (error > MAX_TOL)
                continue;    
            printf
            (
                 "center x: %d y: %d A: %d B: %d\n",
                 rect.x + A,
                 rect.y + B,
                 A,
                 B
            );

            CvScalar color = CV_RGB( rand() % 255, rand() % 255, rand() % 255 );
            cvDrawContours( dst, contour, color, color, -1, CV_FILLED, 8, cvPoint(0,0));
        }

        cvSaveImage("coins.png", dst, 0);
    }
}

给定Carnieri提供的二进制映像,这是输出

./opencv-contour.out coin-ohtsu.pbm
center x: 291 y: 328 A: 54 B: 42
center x: 286 y: 225 A: 46 B: 32
center x: 471 y: 221 A: 48 B: 33
center x: 140 y: 210 A: 42 B: 28
center x: 419 y: 116 A: 32 B: 19

这是输出图像:

硬币

您可以改善的地方:

处理不同的椭圆方向(当前,我假设轴是垂直/水平的)。使用图像矩将不难做到。 检查对象的凸度(看一下cvConvexityDefects) 区分硬币和其他物体的最佳方法可能是通过形状。我无法想到其他任何低级图像功能(颜色显然不可用)。因此,我可以想到两种方法

传统物体检测 您的第一个任务是从背景中分离对象(硬币和非硬币)。如Carnieri所建议的,Ohtsu的方法在这里很好地工作。您似乎担心图像是两部分的,但我认为这不会成为问题。只要可以看到大量办公桌,就可以保证直方图中有一个峰值。只要桌子上有几个视觉上可区分的物体,就可以确保您达到第二个高峰。

扩展您的二进制图像几次,以消除阈值留下的噪声。硬币相对较大,因此它们应能经受这种形态学操作。

使用区域增长将白色像素分组为对象-只是迭代地连接相邻的前景像素。在此操作结束时,您将获得不相交对象的列表,并且将知道每个对象占用哪些像素。

根据此信息,您将知道对象的宽度和高度(从上一步开始)。因此,现在您可以估计围绕对象的椭圆的大小,然后查看此特定对象与椭圆的匹配程度。仅使用宽度与高度之比可能会更容易。

另外,您也可以使用力矩以更精确的方式确定物体的形状。

其他 2022/1/1 18:14:23 有414人围观

撰写回答


你尚未登录,登录后可以

和开发者交流问题的细节

关注并接收问题和回答的更新提醒

参与内容的编辑和改进,让解决方法与时俱进

请先登录

推荐问题


联系我
置顶