您好, 欢迎来到 !    登录 | 注册 | | 设为首页 | 收藏本站

NLTK将实体识别命名为Python列表

NLTK将实体识别命名为Python列表

nltk.ne_chunk返回嵌套nltk.tree.Tree对象,因此您必须遍历该Tree对象才能到达网元。

看看带有正则表达式的命名实体识别:NLTK

>>> from nltk import ne_chunk, pos_tag, word_tokenize
>>> from nltk.tree import Tree
>>> 
>>> def get_continuous_chunks(text):
...     chunked = ne_chunk(pos_tag(word_tokenize(text)))
...     continuous_chunk = []
...     current_chunk = []
...     for i in chunked:
...             if type(i) == Tree:
...                     current_chunk.append(" ".join([token for token, pos in i.leaves()]))
...             if current_chunk:
...                     named_entity = " ".join(current_chunk)
...                     if named_entity not in continuous_chunk:
...                             continuous_chunk.append(named_entity)
...                             current_chunk = []
...             else:
...                     continue
...     return continuous_chunk
... 
>>> my_sent = "WASHINGTON -- In the wake of a string of abuses by New York police officers in the 1990s, Loretta E. Lynch, the top federal prosecutor in Brooklyn, spoke forcefully about the pain of a broken trust that African-Americans felt and said the responsibility for repairing generations of miscommunication and mistrust fell to law enforcement."
>>> get_continuous_chunks(my_sent)
['WASHINGTON', 'New York', 'Loretta E. Lynch', 'Brooklyn']


>>> my_sent = "How's the weather in New York and Brooklyn"
>>> get_continuous_chunks(my_sent)
['New York', 'Brooklyn']
python 2022/1/1 18:30:22 有407人围观

撰写回答


你尚未登录,登录后可以

和开发者交流问题的细节

关注并接收问题和回答的更新提醒

参与内容的编辑和改进,让解决方法与时俱进

请先登录

推荐问题


联系我
置顶